An Executable Formalisation of the SPARCvS8
Instruction Set Architecture: A Case Study for The
LEON3 Processor

Zhe Hou!, David Sanan!, Alwen Tiu!, Yang Liu!, and Koh Chuen Hoa?

1" School of Computer Science and Engineering, Nanyang Technological University
2 Singapore DSO

Abstract. The SPARCVS instruction set architecture (ISA) has been used in var-
ious processors for workstations, embedded systems, and space missions. How-
ever, there are no publicly available formal models for the SPARCvS ISA. In
this work, we give the first formal model for the integer unit of SPARCv8 ISA
in Isabelle/HOL. We capture the operational semantics of the instructions using
monadic definitions. Our model is a detailed model, which covers many features
specific to SPARC processors, such as delayed-write for control registers, win-
dowed general registers, and more complex memory access. Our model is also
general, as we retain an abstract layer of the model which allows it to be instan-
tiated to support all SPARCv8 compliant processors. We extract executable code
from our formalisation, giving us the first systematically verified executable se-
mantics for the SPARCvS ISA. We have tested our model extensively against a
LEONS3 simulation board, covering both single-step executions and sequential ex-
ecution of programs. We prove some important properties for our formal model,
including a non-interference property for the LEON3 processor.

1 Introduction

Formal models of instruction set architectures (ISAs) not only provide a rigorous un-
derstanding of the semantics for instructions, but also are useful in verifying low-level
programs such as hardware drivers, virtual machines, compilers, etc. Defining an ISA
model in a theorem prover opens up the possibility to reason about properties and se-
mantics of the ISA and machine code. For an extensively developed application of an
ARMYv7 formal model, see Khakpour et al.’s work on verifying non-interference at the
ISA level [20]. There have been various publicly available formal models for ISAs in
the literature, e.g., for ARMG6 [14], ARMv7 [[L7], x86 [25]]. However, to the best of our
knowledge, there are no formalisations of the SPARC family architectures.

The SPARC architecture has many important applications. For instance, SPARC
was commonly used in Sun Oracle station in 2010 when it was acquired by Oracle.
Oracle then launched many SPARC based servers, such as Sun Blade Servers and Sun
Netra Carried-Grade Servers [[13]]. SPARC is also used in supercomputers. Fujitsu’s K
computer [2], ranked NO.1 in TOP500 2011, combined 88,128 SPARC CPUs. Tianhe-
2 8], ranked NO.1 in TOP500 2014, has a number of components with SPARC based
processors. Most importantly, SPARC is widely used in defense, aviation systems, and

space missions. ESA chose to use SPARCvV8, mainly because SPARC is one of the few
fully open ISAs (other than RISC-V [5] etc.), and has significant support. ESA then
started the LEON project to develop processors for space projects [[1].

This work is a part of a research project called Securify, which aims to verify an
execution stack ranging from CPU, micro-kernel, libraries to applications. We use a
multi-layer verification approach where we formalize each layer separately and use a
refinement-based approach to show that important properties proved at the top level are
preserved at the lower levels. One such property is a non-interference property between
different partitions in a micro-kernel. We have recently completed a formalization of the
high-level specification of a separation micro-kernel [27], and the idea is to show that
the implementation of such a micro-kernel preserves the non-interference property, both
at the software and the hardware level. As a concrete case study, we choose to formalize
the XtratuM [9] micro-kernel that runs on top of the multi-core LEON3 processor; these
formalization efforts are still on-going. The ISA formalisation described in this paper is
a key component bridging these two formalizations. Our choice of XtratuM and LEON3
is mainly driven by the fact that they are open source and that our intended applications
will be built on these platforms. Our model can be instantiated to LEON2 and LEON4,
we do not use the latter because its source code is not available. Since our goal is to
support the verification of XtratuM machine code, we currently focus on formalizing
the integer unit (IU) of SPARCVS8, which contains all the instructions used in XtratuM.

This paper presents the first detailed Isabelle/HOL model for the IU in the SPARCv8
ISA. Although there are formal models for other ISAs in the literature (e.g., [14125]]),
the difference in architecture and several special features of SPARC make the adap-
tation of existing models to our work challenging. For example, the register model in
SPARCVS is not a flat 32-register model, but instead consists of a set of overlapping
register windows arranged in a circular buffer. There are flags such as annul that
may cause instructions to be skipped [13]]. Memory access in SPARCVS requires an
additional parameter, i.e., the address space identifier (ASI), that specifies whether the
processor is in supervisor or user mode, and whether the memory access is data access.
Finally, the write control register instructions may be delayed, thus we have to devise
a mechanism to perform delayed executions. A similar feature appears in the MIPS
architecture, which is modeled in L3 [3]].

Our model covers the following aspects of IU: control registers, system registers,
and general registers; operations on registers (e.g., RDPSR, WRPSR, etc.); a strong
consistency memory model with treatments for address spaces; a simple cache model
with write-through policy; flags such as annul, signals such as execute_mode and
error_mode; and a trap (exception and interruption) model with all the trap table
assignments. We also model store barrier and flush. Except for hardware signals and
interrupts, we have captured all the details of the IU defined in Appendix C of the
SPARCv8 manual [7]]. We also provide a memory management unit (MMU) model to
support multi-core micro-kernel verification. Although our model does not cover the
co-processor unit and the float-point unit, they can be added to our model using the
same methodology.

Our main contributions are: (1) We give a formal model for the IU of SPARCvS
ISA. (2) Our model can be exported to OCaml code for both single step execution

and sequential execution. (3) Our model has been extensively tested against a LEON3
simulation board through more than 100,000 instruction instances. (4) To demonstrate
the applicability of our model, we first prove a correctness property which ensures that
the execution of an instruction will not result in failure when the pre-state satisfies a
well-formedness condition. We also show a security property: if the pre-state meets
certain conditions, then the privilege will not be lifted during the execution. Finally, we
show a non-interference property for the LEON3 processor: given two user-mode states
which have the same low privilege resources, after a series of user-mode execution,
the low privilege resources in the two resultant states are still equivalent. That is, the
difference in high privilege data does not affect low privilege execution.

The complete source code of our formalization of SPARCv8 ISA and the simulator
extracted from our formal model can be found at the Securify project website [6]].

Related work. Santoro et al. [24] gave an executable specification for the SPARCv9
architecture with Rapide. However, their model is not built in a theorem proving, thus
it is not suitable for formal verification purposes. Fox studied verification of the ARM6
micro-architecture at the RTL level [[14]. Fox and Myreen later gave more detailed mod-
els for ARM ISAs ranging from version 4 to version 7. Their model for ARMv7 uses
monadic specifications and covers details from instruction decoding to operational se-
mantics in the architecture [[17]]. Their ARMv7 model is the closest work to ours and
it provides a good methodological direction for formalising an ISA and validating the
model. Fox et al. then started a project to specify various ISAs using a specification
language called L3 [[1543]. Fox recently developed a framework for formal verification
of ISAs [16]]. The framework consists of the L3 language for modelling ISAs, Standard
ML for efficient emulation, and HOL4 for formal reasoning. On validation, we mainly
test our model using randomly generated instructions. This is a standard method used
in [17] and [[L1]. There are also formal models for the x86 architecture, such as Sarkar et
al.’s work on the semantics of x86-CC machine code [25]]. Another interesting work is
the ACL2 ISA models [18]]. Similarly to our work, the ACL2 ISA models define instruc-
tion semantic functions over states and provide functions for executing the model for
one instruction or sequentially. A difference is that the ACL2 models are more general
whereas our model is more specific and detailed for SPARCv8. The advantage of using
ACL2 is that ACL2 naturally supports fast evaluation. The Compcert project gave a for-
mally verified compiler for PowerPC, ARM, and IA32 processors [21122]. A remotely
related work is Liu and Moore’s executable JVM model M6 [23], which is written in
a subset of Common Lisp and allows for analytical reasoning as well as simulation.
Finally, the JVM specification given by Atkey [10] inspired us to define the model in a
proof assistant which supports code export for execution.

2 Background

This section introduces the necessary background of the SPARCv8 architecture and the
monadic modeling approach.

Format 1 (op =1): CALL

[op] disp30
31 29 0

Format 2 (op =0): SETHI & Branches (Bicc, FBfcc, CBccc)

op rd op2 imm22

op | a | cond | op2 disp22
31 29 28 B2l 21 0

Format 3 (op =2 or 3): Remaining instructions

op rd op3 sl i=0 asi | rs2
op rd op3 sl i=1 simm13
op rd op3 sl opf | rs2

31 29 24 18 13 12 4 0

Fig. 1. The formats for SPARCv8 instructions. Source: [[7]].

2.1 Overview of SPARCvS ISA

The IU of SPARCVS contains 40 to 520 general-purpose registers depending on the
implementation. The IU also controls the overall operation of the processor, thus it is
a major part of the processor. All SPARCVS instructions are 32-bit wide. Instructions
in the IU fall into four categories: (1) load/store; (2) arithmetic/logical/shift; (3) control
transfer; (4) read/write control register. There are only three instruction formats, shown
in Fig.[I] The load and store instructions are the only instructions that access memory.
SPARC only has two addressing modes: a memory address is given by either two regis-
ters or a register and a signed 13-bit immediate value. Most instructions operate on two
registers, and write the result in the third register. Traps are vectored through a table,
and cause an allocation of a fresh register window in the register file. The main special
features of SPARCv8 are highlighted below.

Windowed registers. Unlike other architectures, the general purpose registers in SPARC
are grouped in overlapping windows. This design allows for straightforward, high-
performance compilers and a significant reduction in memory load/store instructions
over other RISCs [7l]. A window contains 8§ in registers, 8 local registers, and 8 out
registers. At a given time, an instruction can access 8 global registers and the 24 regis-
ter in the current window. The in registers of the current window are the out registers
of the next window; the out registers of the current window are the in registers of the
previous window. This is visualised in Fig.[2] The windows are arranged in a circular
buffer, where the last window’s out registers overlaps with the first window’s in regis-
ters. The current window of registers is determined by a segment in the processor state
register (PSR). The Window Invalid Mask (WIM) register keeps a bit map that contains
information about which windows are currently invalid.

Address space identifier. The memory model in SPARCv8 contains a linear 32-bit ad-
dress space. When the U accesses memory, it appends to the address an address space
identifier (ASI), which encodes whether the processor is in supervisor or user mode
and whether the access is to instruction memory or to data memory, among others. The

window (CWP + 1)

t[31]
5 ins
1[24] 17
23] g globals
A locals il
r[16] window CWP r[0] 0
t[15] 11311 3 0
outs : ins
r[8] 1[24]

4 locals

1[16] window (CWP - 1)
[15] r[31]
outs 3 ins
(8] r[24]
r[23]
3 locals
r[16]
r[15]
B outs
18]

Fig. 2. Three overlapping windowed registers and the global registers. Source: [7].

ASI is also used to access device registers and perform certain operations on devices.
The SPARC architecture defines 4 of the 256 address spaces: user instruction, user data,
supervisor instruction, and supervisor data [7]].

Delayed-write. Besides the general registers, there are also control registers such as the
PSR. The write instructions for control registers are delayed-write instructions. That
is, “they may take until completion of the third instruction following the write instruc-
tion to consummate their write operation. The number of delay instructions (0 to 3) is
implementation-dependent” [7]].

Signals. There are some signals either from instructions or from hardware that play
important roles in the execution of instructions. For example, SPARC, like other RISC
ISAs, features delayed control transfer instructions. When a delayed (conditional) jump
instruction is executed, the jump is not effected immediately. Rather, the next instruction
(also referred to as the delay slot) will be executed before the control transfer to the
jump location is done. However, the delayed control transfer instructions in SPARC may
contain an annul bit that signals that the instruction in the delay slot is to be skipped. We
thus need to keep track of such information in the state and use it to determine whether
certain instructions are to be skipped or not.

2.2 Monads in Operational Semantics

As with the ARMv7 formalisation [[17], we use sequential monads to define operations
in the ISA. A monad is an abstract data type that represents computations. Our Isabelle
monad library is a modified version of the one used in NICTA’s sel.4 project [12].
Instead of using non-deterministic monads in [[12], here we use deterministic monads
(cf. Section [for reasons) defined as below, where M is a shorthand for det monad.

type_synonym ('s, "a) M= "'s = ("a X ’'s) X bool"

which returns a pair (“a x ’s) of the result and the next state, and also a failure flag.
A ‘true’ value in the failure flag denotes failure of execution, whereas a ‘false’ value
denotes a successful execution. We use the following operations on monads:

return: 'a = ('s, 'a) M

fail: "a = ('s, 'a) M

bind: ('s, "a) M= ('a = ('s, '"b) M) = ('s, '"b) M
gets: (‘s = ’'a) = ('s, "a) M

modify: (‘s = ’'s) = (’s, unit) M

The operation return x does not fail, does not change the state, and returns x. The
operation fail sets the failure flag to true. We often use semicolon in Isabelle code for
bind, which composes computations. The gets operation applies a function to the
current state and returns the result without changing the state. The modify operation
changes the current state using the function passed in. The code segment for monad
operations isina do --- od block.

3 Isabelle/HOL Specification for the SPARCvS8 ISA

This section discusses the outline of our SPARCv8 ISA model. We first introduce our
definition of a state, and discuss how various special features of SPARCv8 described
in the previous section can be accommodated in the components of the state. We then
give an example to show how an instruction is modelled. The official descriptions of
SPARCVS are sometimes semi-formal. Many details, such as memory access and cache
flush, are not described at all. Thus we can only formalise those operations based on
our understanding. In Section [5] we discuss how our formal model is validated against
an actual implementation of SPARCVS, i.e., the LEON3 processor.

The core of a monadic specification is the notion of a state. Monad operations trans-
form a state into another. The state in our SPARCvS8 model is defined as:

record (’"a) sparc_state =

cpu_reg:: cpu_context user_reg:: "("a) user_context"
sys_reg:: sys_context mem:: mem_context

mmu:: MMU_state cache:: cpu_cache

dwrite:: delayed_write_pool state_var:: sparc_state_var
traps:: "Trap set" undef:: bool

In general, we deal with implementation-dependent aspects of the ISA by parameteris-
ing them as variables in the model. For example, the parameter ’ a indicates the number
of windows for general registers. The cpu_reg are the control registers; user_reg are
general registers; sys_reg are implementation-dependent system registers; followed by
memory, MMU, and cache. Delayed write pool is a list of delayed write control register
instructions. The state also includes necessary signals and state variables in state_var,
which contains the annul bit, indicators of execute mode, reset_mode, error_mode
of the processor, among others. The state also records a set of traps (exceptions and
interrupts) that may occur during execution, although in SPARCVS, there should not be
more than one trap at any given time. The last member of the state is a failure flag.
The type user_context models windowed registers and is defined as follows:

type_synonym window_context = "user_reg_type = reg_type"

type_synonym (’a) window_size = "'a word"
type_synonym (’a) user_context = "(’a) window_size = window_
context"

where user_reg_type is a 5-bit word, reg_type is a 32-bit word. Our model guar-
antees that the global register r[0] is always 0; the content of in registers of window n
is synchronised with the content of out registers of window n + 1; and the content of
out registers of window n is synchronised with the content of in registers of window
n— 1. In particular, let NWINDOWS be the maximum number of windows, the in registers
of window NWINDOWS —1 are the same as out registers of window 0; out registers of
window O are the same as in registers of window NWINDOWS —1.

The SPARCv8 manual does not specify how exactly memory access functions op-
erate, it only provides interfaces for memory read and write, both of which require a
memory address and an ASI as input. Accordingly, we define memory access as

type_synonym mem_context = "asi_type = phys_address = mem_val_
type option"

where phys_address is a 36-bit word physical address and mem_val_type is an 8-
bit word, the length of ASI is fixed in SPARCv8 as an 8-bit word. Our model is an
extension of the traditional memory access method which is usually defined as a partial
function from addresses to values.

The MMU_state contains all the MMU registers which are used when the MMU
translates a 36-bit physical address to a 32-bit virtual address by looking up three levels
of Page Table Descriptors. The MMU also decides whether a page is accessible in a state
or not by checking the Page Table Entry flags against the ASI. If the MMU is turned
off, the virtual address is simply translated by appending two Os in the beginning. Our
MMU model conforms with the SPARCvS reference MMU model (Appendix H, [7]).

We do not give a detailed discussion of the cache model here because it does not
play an important role at the ISA level. We model it only to give information about
whether the caches are empty or not, which is useful in higher level verification such as
reasoning about memory context switch.

To model the delayed-write instructions, we define the following list type:

type_synonym delayed_write_pool = " (int X reg_type X CPU_
register) list"

where int is the delay, i.e., the number of instructions to wait. This number is re-
duced by 1 in every instruction execution. When the number becomes 0, the 32-bit
word reg_type is written into the control register CPU_register. For a write control
register instruction, we add a delayed-write in the delayed write_pool list where the
delay is implementation-dependent. If the delay is 0, the value is written to the control
register immediately without modifying the pool.

We then define a sparc_state_monad as a pair of a sparc_state and the result
" e of the monad:

type_synonym (’a,’e) sparc_state_monad = "((’a) sparc_state,’e)
det_monad"

Our definition of instructions has the interface
"(’b) instruction = (’a,unit) sparc_state_monad"

where " (b) instruction" is a data type consisting of the name of the instruction
and all its parameters such as registers, immediates etc.

Example specification. We show an example of one of the simplest instruction formal-
isations here. The SETHI instruction is defined in SPARCv8 manual as below [7]:

if (rd # 0) then (r[rd]<31:10> ¢« imm22;r[rd]<9:0> « 0)
Our corresponding formalisation is given below.

sethi_instr instr =
let op_list = snd instr;
imm22 = get_operand_w22 (op_list!0);
rd = get_operand_w5 (op_list!l) in
if rd # 0 then do
curr_win <4 get_curr_win();
write_reg (((ucast (imm22)) ::word32) << 10) curr_win rd;
return () od
else return ()

We first get the parameter imm22 for this instruction from op_1ist, which is obtained
from the decoding of the instruction. To write a value into a general register, we need
to get the current window, as is done by the function get_curr_win. In the SPARCv8
manual, imm22 is written to the bits 31 to 10 (inclusive) of rd, and the bits 9 to 0 are
0s. In our formalisation, we first convert the 22-bit word imm22 to a 32-bit word, then
we shift the lower 22 bits to the left for 10 bits, leaving the lower 10 bits as Os. Finally,
this value is written to the register by the function write_reg, which is defined as:

write_reg w win ur = do
modify (As. (user_reg_mod w win ur s));
return () od

Note that the state is only changed by the modi fy operation. We omit details of other
definitions such as user_reg_mod, which are available in the full formalization in [6].

4 Model Execution

When executing our model, we first need to instantiate it to a particular SPARCvS
compliant processor. The LEON3 processor core [4] is a synthesisable VHDL model of
a 32-bit processor compliant with the SPARCv8 ISA [7]. Its full source code is available
under the GNU GPL license. We use LEON3 as a running example for our SPARCvS
model. We discuss both the execution of a single instruction and sequential composition
of multiple instructions.

Exporting formal models to executable code. Before we discuss the operational se-
mantics of instruction execution, we discuss briefly how we export our formal model
into the executable code so that one can simulate instruction execution more efficiently.
There has been work on exporting a formal model into executable code, e.g., [10].
However, there are various restrictions in Isabelle’s code export feature; much care is
required to ensure that the code can be exported. For example, Isabelle2015 cannot
export a function that returns a set of functions. Consider the following example:

definition f:: "int = (int = int) set" where "f i = {Ax. x}"

This is a legitimate definition, but the Isabelle command value "f 1", which exports
the code to ML and executes it, gives an error. The original NICTA library for monad
defines non-deterministic monads as below.

type_synonym (’s,’a) nondet_monad = "'s = (‘a X ’'s) set X bool"

When we use non-deterministic monad, instruction definitions return " (’ a, unit)
sparc_state_monad", which is equal to

"("a,’d) sparc.state = (unit X (’a,’d) sparc.state) set X bool",
which contains a set. The error occurs because sparc_state is a tuple containing
functions with infinite domains. Since instruction semantics are deterministic and we
do not model concurrent behaviours at the ISA level, we decide to modify the NICTA
monad library to handle deterministic monads, which avoid the errors.

Single Step Execution An execution cycle in our model includes the following oper-
ations (page 158 of [7]]): (1) If there is a trap, execute the trap and skip the following.
(2) Execute delayed-writes. (3) Fetch and decode instruction. (4) If the annul signal is
false, dispatch and execute the instruction. Then, if the instruction is not a control trans-
fer instruction, increment program counter (PC) and next program counter (nPC) by 4.
(5) If the annul signal is true, make it false, and skip this instruction.

Recall that the failure flag True in our monad means failure and False means no
failure. We define a next state function as below:

"NEXT s = case execute_instruction() s of (_,True) = None
| (s’,False) = Some (snd s’)"

We need to provide some implementation-dependent details that are not specified in the
SPARCv8 model, such as the maximum number of register windows. For the LEON3
processor, we set NWINDOWS = 8 and DELAYNUM = 0, and instantiate the parameter
(" a) in the definition of the state to a 5-bit word:

type_synonym leon3_state = " (word_lengthb5) sparc_state"

Finally, we need to initialise the environment, which includes PC, nPC etc., cer-
tain general registers and memory addresses that will be used in the instruction. These
details will not be elaborated here, but are available from [6]].

Sequential Execution. We define sequential execution as follows:

function (sequential) SEQ:: "nat = (’a) sparc_state = (’a)
sparc_state option" where "SEQ 0 s = Some s"
|"SEQ n s = (case SEQ (n-1) s of None = None | Some t = NEXT t)"

Preparing the environment for sequential execution requires initialising control reg-
isters and all the general registers and memory addresses involved in the sequence of
instructions. We note that details such as updating PC and nPC make sequential exe-
cution easier to model and to simulate. A formal ISA model without these details may
deviate from the official documentation when modeling sequential execution. Sequen-
tial execution can prove useful when analysing and validating programs.

To run large scale code such as the XtratuM hypervisor, we need to initialise the
memory in our model to be consistent with real LEON3 hardware. XtratuM may assume
certain values at specific memory addresses for peripheral devices etc. Performance-
wise, we are able to execute an instruction in 0.005s on an Intel Xeon E5-1620 v2 CPU
using a single core. Optimisation and execution of large code are left as future work.

5 Validation

To gain confidence that our formal model is correct, we validate our formal model
against an actual implementation of SPARCv8 ISA, as described next. In the sequel,
we use the OCaml version of our model extracted by the previous section. Isabelle
can also generate other functional language code, but performance differences for other
languages is beyond the scope of this paper.

5.1 Random Single Instruction Testing

Validating the formal model against real hardware by running single step instruction
executions is a standard and systematic solution in the literature, cf. [17/25], to gain
confidence that the formal model captures the behavour of the actual hardware it intends
to model. We use a Xilinx Virtex-7 FPGA VC707 Evaluation Kit to run the official
LEON3 simulator. We use the LEON3/GRLIB source code to generate bitstream code
for LEONS3 single core, duo core, and quad code processors. We use GRMON 2 to test
the execution of instructions on those LEON3 processors. E]

We have developed a tool to generate random instructions with random input and
pre-states for our model. We have also written a tool to prepare the same pre-state for
the LEON3 simulator, run the tests on our model and on the LEON3 simulator, and
compare the results. We describe the details below.

The randomly generated instruction is checked to make sure it is a valid encoding.
We then analyse the instruction instance and determine which memory addresses are in-
volved. Our generator ensures that the majority of memory addresses are well-aligned.
To initialise the pre-state, we generate random 32-bit values for the general registers in
the current window and random 8-bit values for the involved memory addresses. Fur-
thermore, we generate random flags such as the icc bits of PSR. The value of PC is
0x40000000, the values of other control registers are 0s. Since one of the intended ap-
plications of our formalisation is to reason about security properties, we also generate
various tests to test integer overflow and underflow which may lead to security vul-
nerabilities in applications. Such tests are important to make sure that our model does

3 We thank Charles Zhang for his help with our experiment setup.

Program Number of |Time
Instructions|(in sec)
Addition 12 0.033
Multiplication 12 0.033
Swap two variables 14 0.041
Add the digits in a number 107 0.361
Reverse the digits in a number 116 0.339
Find the maximum number in an array 122 0.394
Greatest common divisor & least common multiple|122 0.238
Fibonacci series 141 0.468
Bubble sort 432 1.361

Table 1. Programs tested in sequential execution.

not abstract away integer operations to their ideal mathematical counterparts and would
thus miss potential vulnerabilities caused by integer overflow/underflow.

We then generate the GRMON 2 commands for the LEON3 simulator. The GR-
MON 2 commands initialise the pre-state of the LEON3 simulator to be the same as the
pre-state of our model. This includes the instruction to be executed.

Our validation tool executes both our model and the LEON3 simulator, and com-
pares the post-state. Given an instruction instance, we only examine the registers and
memory addresses involved in it. The other elements in the state are not important for
the validation against LEON3. For example, delayed write_pool is always empty.
Trap set and error_mode etc. will cause exceptions and the result can be observed by
the validator. The side effect of control transfer instructions (modifying the annul flag)
can be checked by examining PC and nPC. The side effects of arithmetic instructions
can be checked by examining PSR. Note that some of these cannot be examined in the
official GRMON tool. The tested instructions should not have other side effects which
may cause bugs in our model.

Our random testing has a large coverage. We test instructions in single core, duo
core, and quad core LEON3 processors; and we test in both supervisor mode and
user mode. Similarly to the validation of the ARMv7 model [17], we cannot fully test
implementation-dependent system features. Our validation has tested more than 100k
instruction instances, and still counting. We believe our validation has been thorough
and efficient; this increases our confidence of the accuracy of our model.

5.2 Program Execution Testing

We choose C programs that range from toy examples to non-trivial functions, covering
a wide range of operations that involve most of the instructions in the IU. The programs
are cross-compiled to obtain SPARC executables, from which we extract the machine
code for execution. As there may be loops in the programs and it is hard to anticipate
how many steps to be executed, we run the machine code on our model until we have an
instruction.access_exception trap, which indicates that the program is finished
and the next instruction is not initialised.

The tested programs are given in Table[I] The second column of Table [I] shows the
number of instructions executed, the third column gives the run time in our Isabelle
model. The number of instructions executed may vary depending on the input. We run

these programs with arrays of length 5 for illustration. When the execution of these
programs is terminated, we examine the memory addresses for the variables and arrays.
Our Isabelle model gives the same result as the LEON3 simulation board on all these
programs for various input.

5.3 Limitations and Implementation-dependent Specifications for LEON3

We summarize some lessons learned from our experiment on the LEON3 board here.

According to the GRMON 2 tool, LEON3 does not implement delay write for con-
trol register instructions. Instructions such as WRPSR, WRWIM, WRY, WRTBR write
the value into the register immediately. LEON3 implements 8 windows for general reg-
isters, while our SPARCv8 model supports up to 32 windows.

We approximate the LEON3 memory access behaviours by testing memory access
with various ASI values: 8 (user instruction), 9 (supervisor instruction), 10 (user data),
and 11 (supervisor data) on the simulation board. We observe the following facts: (1)
Writing value v to ASI 11 of address x, then reading from x in ASI 10 gives the same
value v. (2) Writing v to ASI 11 of address x, then reading from x in ASI 8 gives a
different value from v. (3) In both user mode and supervisor mode, reading memory
with AST 8,9,10 or 11 all work. (4) In user mode, writing to memory with ASI 11 raises
a trap. (5) In user mode, writing to memory with ASI 10 will override the data at the
same address in ASI 11. All the above tests assume that the MMU is turned off. If the
MMU is turned on, then the accessibility depends on the MMU setup.

We noticed an unexpected behaviour: even in supervisor mode, writing to memory
with ASI 8 or 9 does not seem to have any effect. The execution does not raise a trap,
neither does it change the value at the involved addresses. This is possibly because the
hardware defines the instruction memory space to be a segment of addresses we did not
test. For this reason, we have only tested load/store instructions with ASI 10 and 11 in
the random testing. We have enriched our SPARCv8 model with the above behaviours
specific to the LEON3 processor for testing purposes. Hence our model gives the same
result as the LEON3 simulation board when accessing memory in the above cases.

Due to hardware limitations, each SPARCv8 processor only accepts specific val-
ues for PSR, while our model is more general and it does not specify such details.
Thus writing an arbitrary value into PSR may lead to different results in our model
and in the LEON3 processor. This is not considered an error during testing. Another
hardware limitation is that each board only supports a limited amount of memory, thus
accessing random memory addresses may have different outcomes in our model and
in the LEON3 simulator. As a result, we mainly test memory addresses ranging from
0x40000000 to 0x50000000.

The branching instructions sometimes give different results of PC and nPC when the
instruction sets the “annul” bit to 1. Closer inspection reveals that the “step” command
in GRMON?2 may have skipped the annulled instruction, whereas our model pauses be-
fore the annulled instruction. In this case, manual checks against the SPARCv8 manual
confirm that our model is correct.

6 Formal Verification of Security Properties

In this section we prove an important security property, namely non-interference for the
LEON3 processor.

6.1 Single Step Theorem

We first show that when a state satisfies a condition called good_context, a single
step execution from the state does not result in a failure. The execution of an instruc-
tion may generate traps, but not all traps are considered failure. A normal trap, i.e.,
exception or interruption, causes the CPU to run the trap handling functions, and is not
considered a failure. A failure happens only in a special situation where a trap is raised
and the CPU goes to error_mode and awaits to be reset. The rather involved condition
good_context is crafted to avoid failure in execution. Interested readers are referred
to the source code [6] for details. We then show a single step theorem as below:

theorem single_step: "good_context s = NEXT s =
Some (snd (fst (execute_instruction() s)))"

The proof covers each instruction and shows that the monad never returns a failure if
good_context holds; the latter is thus a good standard for verifying if a pre-state is
“sensible” or not.

6.2 Privilege Safety Theorem

Next we show that a successful one step execution in user mode does not lift the privi-
lege to supervisor mode.

theorem privilege_safety:
assumes "get_delayed_pool s = [] A get_trap_set s = {} A

snd (execute_instruction() s) = False A

s’ = snd (fst (execute_instruction() s)) A

((ucast (get_S (cpu_reg_val PSR s)))::wordl) = 0O"
shows " ((ucast (get_S (cpu_regval PSR s’)))::wordl) = 0"

We assume that the delayed-write pool is empty since the LEON3 processor has no
delayed write. We also assume that there are no traps to be executed. If there is a trap, the
instruction will not be executed, the processor will go to supervisor mode and execute
the trap instead. The third conjunct in the assumption says execute_instruction
does not return a failure, the fourth conjunct says s’ is the post-state, the last conjunct
says the S bit in the pre-state s is O (i.e., s is in user mode). We show that the S bit in the
post-state s’ is also 0. This proof is a case analysis for each instruction and it checks
that the execution mode is not modified.

6.3 Non-interference Theorem

Non-interference is an essential requirement for security. It allows user applications
or virtual machines to co-exist without violating confidentiality, and it can save costly

hardware which is otherwise needed to provide physical separation of data [20]. When
MMU is enabled, non-interference also provides an isolation between users in different
processes. That is, the high privilege resource in our setting may refer to the resource
of other user processes that the current user does not have access to. This is particularly
important in our project since we are interested in verifying properties for a multi-core
hypervisor. Traditionally, non-interference for a deterministic program states that when
a low privilege user is working on the machine, it will execute in the same manner
regardless of the change of high privilege data [26]. At the ISA level, this is similar
to the non-infiltration property a la Khakpour et al. [20]. Here we first show that non-
interference is preserved in single step executions.

theorem non_interference_step:

assumes " ((ucast (get_S (cpu_reg_val PSR sl)))::wordl) = 0
good_context sl A good_context s2 A low_equal sl s2 A
get_delayed_pool sl = [] A get_trap_set sl = {} A

((ucast (get_S (cpu_reg_val PSR s2)))::wordl) = 0 A
get_delayed_pool s2 = [] A get_trap_set s2 = {}"

shows "d tl t2. Some tl = NEXT sl A Some t2 = NEXT s2 A
((ucast (get_S (cpu_reg_val PSR tl)))::wordl) = 0 A
((ucast (get_S (cpu_reg_val PSR t2)))::wordl) = 0 A

low_equal tl1 t2"

We assume that the two pre-states s1 and s2 are both in user mode, they satisfy
good_context, they have no delayed writes and traps. We further assume that s1 and
s2 are equivalent on low privilege resources. We show that the next states t 1, t2 must
exist, they are both in user mode, and they are still equivalent on low privilege resources.
The predicate 1ow_equal is defined as:

low_equal sl s2 =

(cpu_reg sl) = (cpu_reg s2) A (user_reg sl) = (user_reg s2) A
(sys_reg sl) = (sys_reg s2) A (V va. (virt_to_phys va (mmu sl)
(mem sl)) = (virt_to_phys va (mmu s2) (mem s2))) A

(V pa. (user_accessible sl pa) — mem_equal sl s2 pa) A

(mmu sl) = (mmu s2) A (state_var sl) = (state_var s2) A

(traps sl) = (traps s2) A (undef sl) = (undef s2)

Similarly to Khakpour et al.’s definition, our low-equivalence assumes that the two
user mode states agree on the resources that may influence the user mode execution,
but we assume no knowledge about other resources. Here, user_accessible means
that the physical address pa is accessible in state s1. Since we assume that s1 and
s2 have the same MMU setup (including the virtual to physical address translation
virt_to_phys), pa is also accessible in s2. mem_equal states that the block of ad-
dresses where pa belongs to have the same content in s1 and s2. A memory block is a
group of four continuous addresses in which the first address ends with two Os.

From the Single Step Theorem, we obtain that the one step execution from s1 and
s2 will not result in failure, that is, t1 and t2 must exist. From the Safety Privilege
Theorem, we know that t1 and t2 must be in user mode. The reminder of the proof
for the Non-interference Step Theorem is a case analysis for each instruction and we
examine that after the execution the predicate 1ow_equal holds for t1 and t2.

Finally, we show that for any sequence of user mode execution, if the initial states
s1 and s2 are equivalent on low privilege resources, then the final states t1 and t2 are
also equivalent on low privilege resources.

theorem non_interference: assumes

" ((ucast (get_S (cpu_reg_val PSR sl)))::wordl) = 0 A

good_context sl A good_context s2 A low_equal sl s2 A

get_delayed_pool sl = [] A get_trap_set sl = {} A

((ucast (get_S (cpu_reg_val PSR s2)))::wordl) = 0 A

get_delayed_pool s2 = [] A get_trap_set s2 = {} A

user_seqg_exe n sl A user_seq exe n s2"

shows " (3 tl t2. Some tl = SEQ n s1 A Some t2 = SEQ n s2 A
((ucast (get_S (cpu_reg_val PSR tl)))::wordl) = 0 A
((ucast (get_S (cpu_reg_val PSR t2)))::wordl) 0 A
low_equal tl1 t2)"

Here, user_seqg_exe simply assumes that every intermediate state has no traps and
no delayed write instructions; these are necessary to ensure that the sequence of execu-
tion is in user mode. This proof is a simple induction on n using the Non-interference
Step Theorem. The proof script of the theorems in this section measures over 7500
lines due to the large number of cases to be considered. The main difficulty is in check-
ing that the store instructions preserve low_equal. This section demonstrates that we
can prove interesting and non-trivial properties for SPARCv8 and LEON3 using our
formalisation.

7 Conclusion

This paper describes the first formal model of the SPARCv8 ISA. Our formalisation has
over 5000 lines of Isabelle code, not including the proofs. The model can be specialised
to any SPARCVS processor, and it contains many features specific to the SPARCvS
architecture. Our model is carefully designed to take advantage of the Isabelle code
export functionality, through which we obtain executable code from our formal model.

We have validated our model against an official LEON3 simulator on more than
100k random instruction instances as well as real life programs. We believe our for-
malisation provides a solid foundation for future verification problems. To illustrate the
applicability of our model, we have shown a non-interference property for the LEON3
processor. This property guarantees that user mode execution is independent of high
privilege resources which the user has no access to.

With regard to machine code verification using our formal model, there are two pos-
sible angles in future work. First, although the provided operational semantics and the
single step execution allow us to verify properties using Isabelle/HOL, automated rea-
soning about properties of machine code requires much work. Obtaining a functional
representation of the SPARCv8 machine code in Isabelle/HOL from the semantics in-
troduced in this work, in a similar fashion to [[17]], would ease the verification. Second,
the memory model in our SPARCVS8 formalisation is a strong consistency model, which
is not suitable for verifying concurrent execution in modern day multi-core processors.
This requires a weaker memory model, e.g., TSO, as well as a proof system for concur-
rency, such as Rely-Guarantee [19].

This research is supported in part by the National Research Foundation, Prime Min-
ister’s Office, Singapore under its National Cybersecurity R&D Program (Award No.
NRF2014NCR-NCRO001-30) and administered by the National Cybersecurity R&D Di-
rectorate.

References

1. ESA LEON processor. http://www.esa.int/Our_Activities/Space_.
Engineering_Technology/LEON_the_space_chip_that_FEurope_built.
[Online; accessed 27/01/2016].

2. K computer. http://www.top500.0rg/system/177232, [Online; accessed
27/01/2016].

3. L3 specification language for ISAs. http://www.cl.cam.ac.uk/~acjf3/13/,
[Online; accessed 09/12/2015].

4. LEON3 processor. http://www.gaisler.com/index.php/products/
processors/leon3. [Online; accessed 27/10/2015].

5. RISC-V architecture. https://riscv.org/. [Online; accessed 10/08/2016].

6. Securify: Micro-kernel verification. http://securify.scse.ntu.edu.sg/
MicroVer/. [Online; accessed 24/05/2016].

7. The SPARC architecture manual version 8. http://gaisler.com/doc/sparcv8.
pdf. [Online; accessed 27/10/2015].

8. Tianhe-2. http://top500.0rg/system/177999. [Online; accessed 27/01/2016].

9. Xtratum hypervisor. http://www.xtratum.org/. [Online; accessed 29/01/2016].

10. R. Atkey. CoqJVM: An executable specification of the Java virtual machine using dependent
types. In TYPES, LNCS, pages 18-32. Springer, 2005.

11. B. Campbell and I. Stark. Randomised testing of a microprocessor model using SMT-solver
state generation. In FMICS 2014, pages 185-199. Springer, 2014.

12. D. Cock, G. Klein, and T. Sewell. Secure microkernels, state monads and scalable refine-
ment. In Theorem Proving in Higher Order Logics, volume 5170 of LNCS, pages 167-182.
Springer, 2008.

13. S. El Kady, M. Khater, and M. Alhafnawi. MIPS, ARM and SPARC-an architecture com-
parison. In Proceedings of the World Congress on Engineering, volume 1, 2014.

14. A. Fox. Formal specification and verification of ARM6. In Theorem Proving in Higher
Order Logics, volume 2758 of LNCS, pages 25-40. Springer, 2003.

15. A. Fox. Directions in ISA specification. In Interactive Theorem Proving, volume 7406 of
LNCS, pages 338-344. Springer Berlin Heidelberg, 2012.

16. A. Fox. Improved tool support for machine-code decompilation in HOL4. In Interactive
Theorem Proving 2015, pages 187-202, 2015.

17. A. Fox and M. O. Myreen. A trustworthy monadic formalization of the ARMV7 instruction
set architecture. In Interactive Theorem Proving, pages 243-258, 2010.

18. S. Goel, W. A. Hunt, and M. Kaufmann. Abstract stobjs and their application to ISA model-
ing. In ACL2 2013, pages 54-69, 2013.

19. C. B. Jones. Specification and design of (parallel) programs. In Proceedings of IFIP’83,
pages 321-332. North-Holland, 1983.

20. N. Khakpour, O. Schwarz, and M. Dam. Machine assisted proof of ARMv7 instruction level
isolation properties. In Certified Programs and Proofs, volume 8307, pages 276-291. LNCS,
2013.

21. X. Leroy. Formal certification of a compiler back-end, or: programming a compiler with
a proof assistant. In In Proceedings. 33rd ACM Symposium on Principles of Programming
Languages, 2006.

http://www.esa.int/Our_Activities/Space_Engineering_Technology/LEON_the_space_chip_that_Europe_built
http://www.esa.int/Our_Activities/Space_Engineering_Technology/LEON_the_space_chip_that_Europe_built
http://www.top500.org/system/177232
http://www.cl.cam.ac.uk/~acjf3/l3/
http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/processors/leon3
https://riscv.org/
http://securify.scse.ntu.edu.sg/MicroVer/
http://securify.scse.ntu.edu.sg/MicroVer/
http://gaisler.com/doc/sparcv8.pdf
http://gaisler.com/doc/sparcv8.pdf
http://top500.org/system/177999
http://www.xtratum.org/

22.

23.

24.

25.

26.

217.

X. Leroy. The CompCert C verified compiler. http://compcert.inria.fr/man/
manual . pdf, 2015. [Online; accessed 29/01/2016].

H. Liu and J. S. Moore. Executable JVM model for analytical reasoning: A study. In Pro-
ceedings of the 2003 Workshop on Interpreters, Virtual Machines and Emulators, pages 15—
23. ACM, 2003.

A. Santoro, W. Park, and D. Luckham. SPARC-V9 architecture specification with Rapide.
Technical report, Stanford, CA, USA, 1995.

S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant, M. O. Myreen, and
J. Alglave. The semantics of x86-cc multiprocessor machine code. In Proceedings of the
36th Annual ACM Symposium on Principles of Programming Languages, pages 379-391.
ACM, 2009.

G. Smith. Principles of secure information flow analysis. In Malware Detection, pages
291-307, 2007.

Y. Zhao, D. Sandn, F. Zhang, and Y. Liu. Reasoning about information flow security of
separation kernels with channel-based communication. In TACAS 2016, volume 9636, pages
791-810. Springer, 2016.

http://compcert.inria.fr/man/manual.pdf
http://compcert.inria.fr/man/manual.pdf

	An Executable Formalisation of the SPARCv8 Instruction Set Architecture: A Case Study for The LEON3 Processor

